Centre No.			Paper Reference				Surname	Initial(s)			
Candidate No.			4	3	3	5	/	2	H	Signature	

Paper Reference(s)

4335/2H

London Examinations IGCSE

Chemistry

Paper 2H

Higher Tier

Monday 10 November 2008 – Afternoon

Time: 2 hours

Materials required for examination Items included with question papers

Instructions	to	Candidates
mon actions	w	Canulate

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer ALL the questions. Write your answers in the spaces provided in this question paper. Show all stages in any calculations and state the units.

Calculators may be used.

Information for Candidates

The total mark for this paper is 120. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper.

There are 28 pages in this question paper. All blank pages are indicated.

A Periodic Table is given on page 2.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with

N31768A

W850/U4335/57570 5/7/5/4/2/450

Turn over

Total

Examiner's use only

Question Number

1

2

3

4

5

6

7

10

						1	
	0	Helium 2	20 Neon 10 10 A Argon	18 Krypton 36 X X X X X X X X X X X X X X X X X X	Xenon 54 222 Badon 86		
	7		19 Fluorine 35.5 Cl	17 80 Bromine 35 127	S3 210 At Astatine 85		
	9		16 Oxygen 8 32 Sulphur	Selenium 34 128 128 T.A.			
	rc		Nitrogen 7 31 Phosphorus	15 75 AS Assenic 33 Ch.	Antimony 51 209 Bismuth 83		
	4		Carbon 6 6 Silicon Silicon	Germanium 32 119 119	207 S = 1 S		
	ო		Boron 5 Aluminium	13 Callium 31 115 7	1 Lindium 49 204 Thailium 81		
ш				211 Zinc 30 Zinc 215 Zinc 20 Z	Cadmium 48 201 Hg Mercury 80		
TABL				63.5 Copper 29 108	Silver 47 47 Au Gold		
THE PERIODIC TABLE				28 S S S S S S S S S S S S S S S S S S S	Palladium 46 195 Pt		
HE PE					Rhodium 45 192 Ir Iridium 77		
-				% Feb. 58 101 101 101 101 101 101 101 101 101 10	Ruthenium 44 44 OS OSmium 76	-1	tomic participation of the second of the sec
	Group	Hydrogen 1		Manganese	Molybdenum Technetium Molybdenum Technetium 184 186 W Ree Tungsten Rhenium 75 75 75	4	Key Relative atomic mass Symbol Name Atomic number
				Chromium 24 96	Molybdenum 42 184 184 V Tungsten 74	⊣	
				Vanadium 23	Niobium 41 181 Tantalum 73		
				<u> </u>	Zirconium 40 179 HAthium 72		
				Scandium 21 89	Yttrium 39 139 139 L.a. Lanthanum 57	Actinium 89	
	α		9 Be- Beryllium 4 24 24 Mg Maonesium	Calcium 20 88 88 9.5	Strontium 38 38 137 137 Barrum 56		
		_	Lithium 3 3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	39 X X Potassium 19 40 40	Rubidium 37 133 Cs Caesium 55	223 Fr Francium 87	
		Period 1	α σ	4 r	ဂ ဖ	7	

(1)

SECTION A

1. Oxygen gas can be prepared and collected in the laboratory using the apparatus shown in the diagram.

(a) Hydrogen peroxide decomposes very slowly to form water and oxygen.

(i)	Write a word equation for this reaction.	
		(1)
(ii)	The reaction is much faster if a small amount of manganese(IV) oxide is add What type of substance is manganese(IV) oxide in this reaction?	ded.
	e diagram shows oxygen gas being collected in a syringe. ggest one other way to collect the gas.	(1)
 Des	scribe the test for oxygen.	(1)

(b)

(c)

	(1)
(ii)	The diagrams show the electron configurations of an atom of lithium and an atom of oxygen.
	(Li) (O)
	Describe what happens, in terms of electrons, when lithium reacts with oxygen.
	(3)
(iii)	Write the formula of each of the ions in lithium oxide.
	Lithium ion
	Oxide ion(2)
	(Total 10 marks)
	(2000 20 1100 110)

2. A few drops of liquid bromine and a few crystals of solid iodine are placed in the bottom of separate gas jars and the open ends covered with lids. The jars are left for some time under the same conditions.

The diagrams show the jars just after the bromine and iodine are added, and after some time.

(a) State the colour of

liquid bromine	
solid iodine	
	(2)

- (b) The diagrams show that the particles of bromine and iodine spread out in the jars.
 - (i) What is the name of this process?

	(1)

(ii) The iodine changes into a gas before this process occurs. The chemical equation for this change is

$$I_2(s) \, \to \, I_2(g)$$

The change involving bromine is called evaporation. Write a chemical equation, including state symbols, for this change.

Leave	
blank	

	Movement
	Spacing
	(2)
/	e gases chlorine and hydrogen react together to form hydrogen chloride gas. drogen chloride gas dissolves in water to form hydrochloric acid.
Bro	omine reacts in a similar way to chlorine.
(i)	Write a word equation for the reaction between bromine and hydrogen.
	(1)
(ii)	Suggest the name of the acid formed when the product in (c)(i) dissolves in water.
	(1)

(d) The diagram shows apparatus for electrolysing lead(II) bromide.

	(1)
	State what must be done before electrolysis can occur.
(-)	
(i)	When the apparatus is set up as shown, electrolysis does not occur.

(ii)	When electrolysis occurs, p	particles A,	B and	C move in	the directions	shown by
	the arrows in the diagram.	Identify ea	ach of th	nese particle	es.	

A	
В	
D	
C	

(e)	Explain why the reaction at the negative electrode is described as reduction.	

(1)

(Total 14 marks)

4.	Eth	ene can be converted to ethyl ethanoate as follows:	
		,	
		ethene \longrightarrow ethanol \longrightarrow ethyl ethanoate CH_3CH_2OH	
	(a)	In industry, ethene is converted to ethanol by reacting it with steam in the presence of a catalyst.	
		(i) Write the chemical equation for this reaction.	
		(1)	
		(ii) Name the catalyst used.	
		(1)	
	(b)	Ethanol can also be made by fermentation. Describe how this is done.	
		(4)	

(')	White the change of a marking is 1.12 and 1.1.0 at 1.2.0	
(1)	Write the chemical equation, including state symbols, for this reaction.	
(ii)	How can a student detect the formation of ethyl ethanoate in this reaction?	
	(1)	
	(Total 10 marks)	

SECTION B

5. (a) The table shows the electronic configurations of atoms of the elements in Period 3 of the Periodic Table.

Element	Na	Mg	Al	Si	P	S	Cl	Ar
Electronic configuration	2.8.1	2.8.2	2.8.3	2.8.4	2.8.5	2.8.6	2.8.7	2.8.8

	(i)	How is the electronic configuration of an atom of an element related position in the Periodic Table?	to its
			(1)
	(ii)	Give the electronic configuration of an atom of the element directly be magnesium in the Periodic Table.	elow
			(1)
(b)	Exp	plain the meaning of the term isotopes .	
			•••••
			(2)

12

(c) An element exists as three isotopes. The table gives some information about them.

Number of neutrons	Number of protons	Atomic number of isotope	Mass number of isotope	Percentage of each isotope in the element
		12	24	79
13	12	12		
14	12		26	11

Number of neutrons	Number of protons	Atomic number of isotope	Mass number of isotope	Percentage of each isotope in the element
		12	24	79
13	12	12		
14	12		26	11
Use the info element.		ble and the Perio	odic Table on pa	ge 2 to identify the (1) tomic mass of the
				(3)
was added t What would	o dilute sulphuri	c acid, effervesce ole of the elemen	ence was seen. t containing only	mass number of 24 atoms with a mass ur answer.
Observation	1			
Explanation	······································			
				(2)
				(Total 15 marks)

6. (a) The diagram represents the structure of a metal.

electrons from outer shell of metal atoms

metal ions

Use the diagram to help you explain

(i)	why a metal conducts electricity	
		••••
		(2)
(ii)	why a metal is malleable.	

(b) Copper is purified by electrolysis.

Label the diagram of the apparatus used.

(c) Aluminium is obtained from aluminium oxide using electrolysis.

(i) Explain why the aluminium oxide is dissolved in molten cryolite.

(ii) Name the element used for both the positive and negative electrodes.

(1)

(1)

(3)

	metals and give a property of the metal on which that use depends.
	Use of copper
	Property on which use depends
	Use of aluminium
	Property on which use depends
	(4)
(e)	Titanium is a metal that has a similar reactivity to aluminium. Rutile is an ore that contains titanium dioxide, TiO_2 . Suggest how titanium could be obtained from this ore and explain your answer.
	(2)
	(Total 15 marks)

7. (a) The apparatus shown can be used to react iron with dry hydrogen chloride gas.

One of the products is iron(II) chloride.

Write a chemical equation for the reaction.

(3)

(b) When hot iron wool is plunged into a gas jar containing dry chlorine gas, a rapid reaction occurs. The iron wool glows brightly and a dense smoke of iron(III) chloride is seen.

What does the fact that the iron wool glows brightly tell you about the reaction?

(1)

Describe how you could use sodium hydroxide solution to distinguish between solid samples of iron(II) chloride and iron(III) chloride. Give brief details of what you would do and what you would observe in each case.
(4)
(Total 8 marks)
(Total & marks)

Compound	Displayed formula
A	H H H—C—C—H H H
В	H H H—C—C—O H H H
C	H H C=C H H
D	H H H H—C—C—C—H H H H
E	C = C H H H H H H H H

(i) Give one reason why compound **B** is not a hydrocarbon.

(1)

(ii) State the empirical formula of compound **A**.

(1)

(iii) Both **A** and **D** are members of the same homologous series.

What is a homologous series?

(iv) Dra	w a dot and cross diagram to show the bonding in compound A .
(v) Wha	at is the name of the addition polymer formed by compound E ?
••••	
(vi) Dra	w the repeat unit of the addition polymer of compound E .
(VI) DIa	w the repeat unit of the addition polymer of compound E.
	npound E reacts rapidly with bromine water but the addition polymer apound E does not. Explain this difference in behaviour.
••••	

	Leave
(b) Draw the displayed fermoules of three isomeons with melecular fermoule C. H.	blank
(b) Draw the displayed formulae of three isomers with molecular formula C ₄ H ₈ .	
(3)	Q8
(Total 14 marks)	
(2011.21.11.11.11.11)	

Leave
hlank

At	a high temperature, calcium oxide reacts with carbon to form calcium carbide, CaC ₂ .
	$CaO(s) + 3C(s) \rightarrow CaC_2(s) + CO(g)$
(a)	Calcium oxide reacts with carbon to make 128 g of calcium carbide. Calculate
	(i) the relative formula mass of calcium carbide.
	(1
	(ii) the amount, in moles, of calcium carbide made in the reaction.
	(1
	(iii) the minimum amount, in moles, of carbon that is required to make this amount of calcium carbide.
	(iv) the minimum mass, in g, of carbon required.
	(1
(b)	Calcium carbide reacts with water to make the gas ethyne, C_2H_2 , and a compound calcium.
	(i) Complete the chemical equation for this reaction:
	$CaC_2 + 2H_2O \rightarrow C_2H_2 + \dots$ (1
	(ii) Ethyne, C ₂ H ₂ , is highly flammable.
	Predict the products of the complete combustion of ethyne.
	(2

(c) Ethyne reacts with hydrogen chloride gas.

Leave blank

$$H-C \equiv C-H + H-Cl \longrightarrow H-C-C-H$$

$$H-Cl \longrightarrow H-Cl \longrightarrow H-Cl$$

$$H \longrightarrow Cl$$

$$H \longrightarrow Cl$$

$$H \longrightarrow Cl$$

The table shows some average bond dissociation energies.

Bond	Average bond dissociation energy (kJ/mol)
н—с	412
C≡C	837
Н—С1	431
С—С	348
C—Cl	338

(i) Calculate the energy, in kJ, required to break all of the bonds in the reactants.

(2)

(ii) Calculate the energy, in kJ, given out when all of the bonds in the product are formed.

(2)

(1)

(iii) Calculate the value of ΔH , in kJ/mol, for the reaction.

Q9

(Total 12 marks)

10. The diagrams show the structures of diamond and graphite. They are different structural forms of the element carbon.

diamond

graphite

(a)	What type of structure are both diamond and graphite?	
		(1)
(b)	Diamond has a high sublimation temperature. Explain why.	

		(3)

(c)	Graphite can be used as a lubricant. Explain why.

	otballs.
(i)	C_{60} has a much lower sublimation temperature than diamond. Suggest why.
(ii	Would you expect C_{60} to act as a lubricant? Explain your answer.
	(2)
	(2) (Total 11 marks)
	(Total 11 marks)
	(Total 11 marks) TOTAL FOR SECTION B: 75 MARKS

